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A New Model to Predict Effective Elastic Constants of Composites
with Spherical Fillers
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Gyeongsansi, Gyeongbuk 712-702, Korea

In this study, a new model to predict the effective elastic constants of composites with spher-

ical fillers is proposed. The original Eshelby model is extended to a finite filler volume fraction

without using Mori-Tanaka’s mean field approach. When single filler is embedded in the

matrix, the effective elastic constants of the composite are computed. The composite is in turn

considered as a new matrix, where new single filler is again embedded in the matrix. The pre-

dicted results by the present model with a series of embedding procedures are compared with

those by Mori-Tanaka, self-consistent, and generalized self-consistent models. It is revealed

through parametric studies such as stiffness ratio of the filler to the matrix and filler volume

fraction that the present model gives more accurate predictions than Mori-Tanaka model with-

out using the complicated numerical scheme used in self-consistent and generalized self-con-

sistent models.
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Nomenclature
Oy ' Stress in the filler
0° . Applied stress

£ . Fiber domain
Cn . Stiffness of the matrix material
C, . Stiffness of the filler material

D : Composite domain
o

e’ ! Strain generated in the matrix without the
filler by applied stress

. Strain disturbed by the existence of the filler

e* [ Equivalent eigenstrain of the equivalent in-

clusion

ec . Strain generated in the composite by ap-
plied stress

Ex» : Young’s modulus of the matrix

E;  Young’s modulus of the filler
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f . Filler volume fraction

I : 6X6 identity matrix

S Eshelby tensor

S¢ : Compliance of the composite
W ' Elastic strain energy density
Subscripts

f : The filler

m . The matrix
¢ . The composite

1. Introduction

Composites have inherent advantages of their
wide range of thermomechanical properties over
the unreinforced matrix material, to which much
attention has been paid with increasing compli-
cated in—use environment. In order to get the de-
sirable properties of the composites, the compos-
ites are designed with the proper selection of con-
stituent materials, filler shape and size, and filler
volume fraction, etc. Prior to the design stage, the
prediction of the properties by a model is prere-
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quisite through the comprehensive understanding
of thermomechanical behavior with variation of
parameters. So far many attempts have been made
for predicting the effective material properties of
composites.

Variational approach has been applied to pro-
vide the upper and lower bounds for elastic con-
stants, thermal expansion coefficient, and therm-
al conductivities of the composites. (Hashin and
Shtrikman, 1963) The resulting thermomechan-
ical properties are not exact, but only their range
can be guaranteed. For predicting the actual pro-
perties of the composites, several models such as
the dilute model, the non-dilute model, the self-
consistent model, the generalized self-consistent
model, and finite element method with a homo-
genization technique have been introduced. The
self-consistent model (SCM) was first proposed
to predict the effective elastic constants of com-
posites with spherical fillers, where a single par-
ticle is embedded in an infinite matrix of the
unknown average properties of the composite.
(Budiansky, 1965 ; Hill, 1965) This model is fur-
ther extended to composites with various shapes
of fillers. (Laws and McLaughlin, 1979 ; Chou et
al., 1980) Generalized self-consistent model (GSCM)
known as a double embedding approach has been
applied to composites for the estimation of its ma-
terial properties. (Christensen and Lo, 1979 ; Dai
et al., 1998 ; Dong et al., 2005) This model is wide-
ly regarded as superior to other models. (Tucker
III and Liang, 1999) In most cases, however, any
SCM and GSCM require rigorous numerical com-
putations such as the iterative method. With pro-
gress of computer, effective material properties
of composites have been predicted by use of the
finite element method. (Segurado and Llorca, 2002 ;
Saraev and Schmauder, 2003 ; Segurado et al.,
2003) Fillers are assumed to be periodically ar-
ranged in the matrix and the homogenization
technique was employed to compute effective ma-
terial properties of the composites. Mori-Tanaka
model (MTM) has been proposed for predicting
the effective material properties of the composites
with consideration of interactions between fillers
in real composites, which is the modified ver-
sion of the Eshelby’s original method.(Taya and
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Chou, 1981 ; Taya and Mura, 1981 ; Tandon and
Weng, 1984 ; Weng, 1984 ; Lee, 2005; Lee and
Kim, 2005) It is assumed that each particle sees a
far-field strain equal to the average strain in the
matrix. Since MTM can be applied to the com-
posites with both periodically and non-period-
ically arranged fillers, it has been widely used for
predicting the effective material properties of the
composites due to its relative simplicity and ac-
curacy. (Tucker IIT and Liang, 1999)

In the present study, the effective elastic con-
stants of composites with spherical fillers are pre-
dicted by a new model. The present model (PM)
follows faithfully the original Eshelby’s equiva-
lent inclusion method to account for the finite
volume fraction of fillers instead of using Mori-
Tanaka mean field theory for the interactions
between fillers. (Eshelby, 1957 ; Mori and Tanaka,
1973) Since Eshelby’s original solution only ap-
plies to a single particle surrounded by an infi-
nite matrix, it is known that its result is accurate
only at low filler volume fraction. Therefore, the
effective elastic constants of the composite with a
single filler are computed, which is in turn con-
sidered as a new matrix material and new single
filler is again embedded in it. By repeatedly em-
bedding the filler in the new matrix, the effective
elastic constants for the finite volume fraction of
fillers are predicted. The results by PM are com-
pared and discussed with those by MTM, SCM,
and GSCM for various filler volume fractions and
stiffness ratios of the filler to the matrix, through
which the applicability of PM is demonstrated.

2. Formulation

Following the Eshelby’s equivalent inclusion
method to predict the effective elastic constants
of the composite, let’s consider the composite as
single spherical filler embedded in the matrix as
shown in Fig. 1(a).(Eshelby, 1957) The original
problem is schematically shown in Fig. 1(a),
which is converted into the Eshelby’s equivalent
inclusion problem as shown in Fig. 1(b). D—8
and L2 represent the isotropic matrix and filler do-
mains of the composite, respectively, which here-
after are denoted as subscripts 7 and f, respec-
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Fig. 1 An analytical model for computing the elas-
tic constants of the composite : (a) Compo-
site with single filler, which is converted to
(b) Eshelby’s equivalent inclusion problem.
(c) Single filler is again embedded in the new
matrix, which converted to (d) Eshelby’s equi-
valent inclusion problem

tively. A vector or matrix is represented as a bold-
faced letter.

When the composite with the dilute filler is
subjected to the uniform stress 0°, the stress in
the filler and matrix can be determined with the
help of Eshelby’s equivalent inclusion method.
The stress inside the filler 0 can be expressed as

0,=Cs(e°+e) =Cn(e’+e—e*) (1)

where C, e, and e* represent the stiffness, the
strain disturbed by the existence of the filler, and
the equivalent eigenstrain of the equivalent inclu-
sion problem, respectively, and e° is related to
the applied stress 0° by

do :Cmea (2>

The disturbed strain e in the filler is related through
Eshelby’s tensor S as follows :

e=Se"* (3)

where S is functions of the Poisson’s ratio of the

matrix and the shape of the filler. From Egs. (1) ~
(3), the eigenstrain e* is explicitly represented as

e*: - [ (Cf_cm) S+Cm] _I(Cf_Cm> Cr_nldo (4)

where I is 6 X6 identity matrix.

Eshelby showed that the elastic strain energy
density W of the composite with inhomogeneous
inclusions is given by

] 0,0 L O, %
W=7/l;dedv+2/96edv (5)

where v denotes the volume to be interated.
(Eshelby, 1957)

Since the eigenstrain e* is constant in the filler,
Eq. (5) can be simply reduced to

W:%Goeo_f_%fdoe* (6)
where f is the filler volume fraction. The strain
energy density of the composite with stiffness Cc
subjected to the uniform applied stress 0° can be

expressed as

1 1
W:i doec:7

0°C:'o? (7)
Since the elastic strain energy densities computed
by both Eq. (6) and (7) must be consistent, Egs.
(4)1 (6)7 and (7) iS I’Cduced to

0°Cy'0°—f0°[(C;—Cn)S+Cn] ™ (C;—Cn) Ci' 0° (8)
— GUC;IGO

Rearranging Eq. (8), the effective stiffness of the
composite, Ce, is expressed in explicit form as

Cc:Cm{I_f [ (Cf_Cm> S‘I’Cm] -1 (Cf_Cm> }71 (9)

The compliance of the composite is the inverse of
the stiffness in Eq. (9), which is given by

Sc={I—f[(C;—Cn)S+Cn]™(C,—Cwn) } Cx' (11)
3. Computational Procedures

The present model (PM) is different from the
other models such as Mori-Tanaka model (MTM),
self-consistent model (SCM), and generalized
self-consistent model (GSCM). It is rather more
straightforward than SCM and GSCM. The ana-
lytical model and schematic representation of com-
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putational procedures are shown in detail in Figs.
1 and 2, respectively and their detailed explana-
tions are given as follows.

The model shown in Fig. 1(a) is considered as
the composite of the matrix and single filler, bas-
ed on which Eshelby’s equivalent inclusion prob-
lem is described in Fig. 1(b). The effective elastic
constants of the composite in Fig. 1(a) such as
Young’s modulus and Poisson’s ratio are deter-
mined by Eq. (11) derived in the section 2. The
composite is considered as the new matrix mate-
rial, in which an additional filler is embedded
as shown Fig. 1(c). Fig. 1(c) is converted into
Eshelby’s equivalent inclusion problem as shown
in Fig. 1(d). Let’s assume the initial filler volume
fraction in the composite to be f, as shown in
Fig. 1(c), where the incremental filler volume
fraction Af replaces the composite. With this
operation, the removal of filler volume fraction
is foAf, while newly added filler volume frac-
tion is Af. So, the actual filler volume fraction
at this stage is increased to fo(1—Af) +Af and
the actual increase of filler volume fraction is
Af (1—£y). The new effective material properties
of the composite are predicted again, which are
in turn considered as the new matrix material.

Start with matrix only

v

Compute Eshelby tensor based on matrix

v

Embed single filler in the matrix

v

Compute elastic constants of composite and

Eshelby tensor based on it

Target volume
fraction reached?

End

Fig. 2 Schematic representation of the computation-
al procedures used for the present study

Aforementioned procedures are repeated up to
the range of the filler volume fraction investigated
as shown in Fig. 2.

Table 1 Material properties of the matrix and filler
for the present study

Matrix Filler
Young’s modulus 70 GPa Variable
Poisson’s ratio 0.33 0.165
Aspect ratio - 1
Volume fraction of fillers - Variable

4. Results and Discussions

The material properties of the model composite
are tabulated in Table 1, which are used for the
present study. The Young’s modulus and Poisson
ratio of the composite with spherical fillers are
predicted as a function of filler volume fraction
by PM, MTM, SCM, and GSCM. Their results
are compared to get the general trend of each model
as shown in Fig. 3, where the Young’s modulus
ratio of the filler to the matrix, E;/En, is kept
as 10. The Poisson ratio of the filler is always
assumed to be the half of the matrix’s one.

According to Fig. 3(a), GSCM predicts a little
bit higher Young’s modulus of the composite
than MTM for the whole f investigated. The dif-
ference in predictions between GSCM and MTM
is gradually increased with increasing f and it dis-
appears finally at f =1. However, the comparison
of predictions by both GSCM and PM are quite
different. GSCM predicts almost same Young’s
modulus as PM up to f=0.55, beyond which
PM predicts higher Young’s modulus than GSCM.
In similar to the trend of comparison between
GSCM and MTM, PM always predicts higher
Young’s modulus than MTM over the whole f
investigated, too. For feasible range of f in real
composite world, the predictions by PM are locat-
ed between GSCM and MTM. It can be rough-
ly concluded that PM predicts more accurately
than MTM for the feasible f. As noted in the
literature, it is shown that SCM overestimates
the Young’s modulus over the whole range of
f.(Tucker and Liang, 1999) The predictions of
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Poisson ratio by the models are shown in Fig. 3
(b), where the results by both GSCM and PM
cross each other at f=0.55 like the prediction of
Young’s modulus. It can be stated that the pre-
diction of Poisson ratio by PM shows almost
same result as that of Young’s modulus. The de-
tailed comparison of the accuracy of the predic-
tion between the models is given below.

In order to examine the accuracy of PM in
detail, two parametric studies such as the filler
volume fraction and the stiffness ratio E;/En
have been made. Since GSCM is generally known
to give the best predictions among the models
mentioned in introduction, the predicted results
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Fig. 3 Effective elastic constants of the composite
predicted by representative models as a func-
tion of filler volume fraction, where Young’s
modulus and Poisson ratio ratios of the filler
to the matrix is kept as 10 and 0.5, respective-
ly
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by PM and MTM are normalized for an easy com-
parison by those from GSCM, which are com-
pared and discussed. The filler volume fraction
is changed from 0 to 0.6 and stiffness ratio is
changed from 5 to 50. The computational results
for Young’s modulus and Poisson ratio are shown
in Fig. 4(a) and (b), respectively.

With the variation of the filler volume fraction
and stiffness ratio, the predicted Young’s modulus
of the composite by PM shows the maximum
error of about 8% for f=0.6 and E;/En, com-
pared with GSCM. PM predicts Young’s modulus
within the accuracy of 5% for E;/Ens of 20 or
smaller and the whole f investigated. PM shows
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Fig. 4 Effective elastic constants of the composite

are predicted by PM and MTM and nor-
malized by GSCM as functions of filler vol-
ume fraction and stiffness ratio, where the
ratio of the Poisson ratio of the filler to that
of the matrix is kept as 0.5
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the two types of the maximum error such as a
local maximum error and the maximum error for
a given Es/En,. For example, the local maximum
errors for E7/En, of 5, 10, 20, and 50 take place
at £=0.30, 0.25, 0.25, and 0.25, respectively. The
local maximum error always takes place at low
filler volume fraction, which decreases with in-
creasing Es/En to converge at f=0.25. The maxi-
mum error would take place at f=0.6 unless
E;/E, is smaller than 20. However, the error
of MTM increases gradually with increasing f
and E;/En, so the local maximum error coin-
cides with the maximum error for f and E;/En
investigated. For example, the maximum error is
reasonably small for small Es/E, of 5, while it
reaches about 13% for the largest Es/E, of 50.

Comparing PM with MTM, the underestima-
tion of Young’s modulus by MTM increases with
increasing f and E;/En. The difference between
PM and MTM gradually increases from 0 at /=
0 to the maximum value at around f=0.5. For
example, the differences between them for E;/En
of 50 are about 2, 5, 10, and 12% at f=0.2, 0.3,
0.4, and 0.5, respectively. Thus, much attention
has been paid to predict the properties of the com-
posite especially for 20~50% filler volume frac-
tion and higher stiffness ratio. Since the com-
putational works by both PM and MTM are near-
ly same and simple, it is better to use PM rather
than MTM in terms of the accuracy.

The predicted Poisson ratios of the composite
by both PM and MTM are shown in Fig. 4(b),
which are normalized by those from GSCM. Both
PM and MTM show reasonably good agreements
with GSCM and their errors reaches at most 5%
for the given maximum E;/E, and f. It can be
finally reached that both models can be used for
the prediction of Poisson ratio without the loss
of accuracy.

5. Conclusions

The new model has been proposed to predict
the effective elastic constants of the composites
with spherical fillers, where a series of embedding
procedures are employed to account for the in-
teractions between the fillers instead of using

Mori-Tanaka mean field approach. The present
model can predicts accurately both Young’s mod-
ulus and Poisson ratio of the composite with the
filler volume fraction from O to 0.6 and stiffness
ratio from 5 to 50 within the discrepancies of at
most 8% and 3%, respectively. However, Mori-
Tanaka model predicts Young’s modulus worse
than the present model, whose error reaches to
about 12% at f=0.5 for the stiffness ratio of 50.
The Poisson ratio is accurately predicted by this
model, and its error is less than 5%. It can be
concluded from the present study that the present
model is the best choice to predict the effective
elastic constants of the composites especially with
20~50% filler volume fraction and higher stiff-
ness ratio in terms of the prediction accuracy and
computational cost.
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